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Note 

A Boundary Condition for Significantly Reducing 
Boundary Reflections with a Lagrangian Mesh* 

INTRODUCTION 

Reflections from the terminating mesh boundaries are an important consideration 
in the selection of the calculational grid size for the numerical solution of hyperbolic 
equations. The rationale for selecting the calculational grid is complicated by 
several factors. On one hand we desire both a fine grid to optimize resolution, and 
boundaries far from the region of interest to minimize or delay unphysical reflec- 
tions. On the other hand economic limitations, such as available memory or 
computer time, permit only coarse grids and nearby boundaries. 

Obviously, terminating boundary conditions that eliminate boundary reflections 
or significantly reduce their amplitude are desirable. Some techniques have been 
applied for this purpose. For example, a boundary description thought to scatter 
the impinging waves has been applied with some two-dimensional Lagrangian 
codes. This technique calculates the velocities on alternate boundary nodes while 
setting the velocities on the other set of boundary nodes to zero for a given time- 
step. The roles are reversed in the next calculational time-step and this procedure 
continues. This technique has been applied in the TENSOR two-dimensional 
Lagrangian code [I]. A search of the literature has not revealed information 
discussing characteristics of the scattering technique. 

An adjusted damper system along the boundaries is another technique for 
significantly reducing the boundary reflections and is the subject of this paper. 
Although the method is analyzed below in one dimension, it has been applied in a 
TEMS two-dimensional plane calculation [2]. The results are compared with those 
in which the scattering technique was applied along the boundary, also in a TEMS 
calculation. 

* Notice: This report was prepared as an account of work sponsored by the United States 
Government. Neither the United States nor the United States Energy Research & Development 
Administration, nor any of their employees, nor any of their contractors, subcontractors, or 
their employees, makes any warranty, express or implied, or assumes any legal liability or re- 
sponsibility for the accuracy, completeness or usefulness of any information, apparatus, product 
or process disclosed, or represents that its use would not infringe privately owned rights. 
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THEORY 

A spring-dashpot system used as the terminating network on a one-dimensional 
elastic system can be designed to absorb a single wavelength with the appropriate 
choice of parameters. In the limit as the spring constant of the terminating spring 
approaches zero, the reflection coefficient predicted by a one-dimensional analysis 
is minimized over a range of wavelengths of interest. Hence the description of the 
network terminated with only the dashpot is applied. The governing equations 
describing this system are well known. If we apply the following Fourier expansion 
to these equations 

Xi = exp(-i(j!;( + wt)) + R exp(+i(j/X - wt)), (1) 

where X is the reduced wavelength (that is X = X/27rAX), the form of the reflection 
coefficient R is found to be 

Ll(l - (2m,/m)) + i((1 - &)1/Z - (C/(mK)‘l”)) 
R = fl(- 1 + (2m,/m)) + i((1 - fP)l/2 + (C/(mK)“2)) ’ (2) 

where /1= sin 1/(2x), w = ~(K/wz)~/~ (sin l/(2@), K is the spring constant within the 
mesh, C is the coefficient of darning of the terminating dashpot, m is the nodal 
mass within the mesh, and m0 is the terminating mass. 

Normally with fairly uniform calculational meshes in one and more spatial 
dimensions, the terminating boundary mass m,, is about half the interior masses. 
For m, = m/2, the reflection coefficient becomes 

R = (1 - A2P2 - C/(mK)1;2 = cos 1/(2X) - cos 1/(2X,) 
(1 - /12)1/2 + C/(mK)li2 cos 1/(2x) + cos 1/(2&J ’ (3) 

where X, is the reduced wavelength at the position of no reflection. Figure 1 
displays the reflection characteristics for 5, = 5 and [,, = 10 (for 3 < g < 25, 
&, = 27rX, , the wavelength in zone units). 

When the terminating mass is not equal to half of an internal mesh mass the 
form of the reflection coefficient is more complicated. Ignoring the phase angle, the 
magnitude of the reflection coefficient is 

(1 - (2mo/m))2 sin2 1/(2x) + [cos 1/(2X) - cos 1/(2&)12 
’ R ’ = I (1 - (2m0/m))2 sin2 1/(2X) + [cos 1/(2X) + cos 1/(2XJB 1 

lj2, (4) 

where X, is defined in Eq. (3). As an example of what effect this has on the reflection 
characteristics, Fig. 2 shows the amplitude of the reflection, I R I , for m, = m and 
m,, = 7/16m or 9/16m, both with 6 = 5. 
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FIG. 1. Reflection 
meters shown. 
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FIG. 2. Magnitude of the reflection coefficient as a function of wavelength in zone dimensions 
for the parameters shown. 
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RESULTS 

The TEMS [2] two-dimensional, elastic, dynamic code was used to compare the 
following boundary termination conditions: a fixed boundary, a scattering 
boundary, and the damping condition, which is the subject of this paper. A 30 x 60 
mesh was applied with the elastic material having a density of 2.7 Mg/m3, a 
Young’s modulus, E = 2.5 x lOlo Pa, and a Poisson’s ratio of 0.25 implying a 
compressional wave speed of 3.33 mm/psec. The zones in the calculation were 
square and, except for the corners, the boundary masses were half the internal 
masses. The calculations were performed in plane strain. 

m Area represented in isometric plats 

---- Line taken as free field 
@ SOUW~ 

FIG. 3. Geometry of the two-dimensional calculations. 

A circular source was applied at the center of one end of the mesh, at equal 
distance from both sides and one end (Fig. 3). The appropriate boundary condition 
was applied along the entire periphery of the mesh to both the tangnetial 
and normal components of velocity. For the damping boundary, the damping 
coefficient is given by 

c = (Kmpy2 cos 1/(2&J, (5) 

where X0 is defined in Eq. (3), m is mass of the point just internal to the boundary, 
K is a combination of the Lame constants of a zone adjacent to the boundary 
mass, and V is the volume of the adjacent zone. For the velocity component 
perpendicular to the boundary, 

K= E(l - V)/[(l + V)(l - 241 

in Eq. (5), while E/2(1 + V) was used for K to damp the velocity component 
parallel to the boundary. 

A sinusoidally varying pressure with a wavelength of seven zones was applied as 
the source, and the calculations were continued until the waves generated by this 
source impinged on the boundaries. The source characteristics remained unchanged 
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in the calculations for each variation in the boundary condition (fixed, scattering, 
and damping). 

To assess the effects of the boundaries on the impinging waves, the first invariant 
of the strain tensor (dilatation) adjacent to the boundary was compared to the 
dilatation along a gemetrically similar line in the free field, taken to be the bisector 
of the long axis of the grid (Fig. 3). 

Comparison was made by subtracting the values of the dilatation along a line 
through the free field from the value of this parameter just inside the boundary. The 
position of these lines is chosen to be geometrically similar with respect to the 
source. Figure 4 shows the results of subtracting the free-field dilatation from that 
along the boundary for the damping, scattering, and fixed boundaries. These 
dilatation plots are shown for the time at which the magnitude of the dilatation 
from the first impinging wave was largest. This time was 1.57 T', where T' is the 
compressional wave traversal time from the sources to the near boundaries. 

-3 I I I I I 
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Coordinate along boundary 

FIG. 4. Dilatation difference as a function of the coordinate along boundary for the damped, 
scattering, and fixed boundary conditions. 

DISCUSSION AND CONCLUSIONS 

The phase of the dilatation just inside the boundary is similar for the damping, 
scattering, and fixed boundary conditions (Fig. 4). 

The subtraction of the values along a line in the free field from those along the 
boundary provides a quantitive comparison. For example, if the maximum magni- 
tude of the dilatation difference (the maximum magnitude being defined as the 
difference between the maximum and the minimum on the plot) for the case with 
the damped boundary condition is compared with the fixed case, we note that this 
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magnitude is about 11~.~ of the value for the free case. Comparing these numbers 
with the case having the scattering boundary, we note that the difference is about 
35 % of the value for the fixed case. Hence, with this parameter as a measure, the 
damping boundary reflects less than 33 % as much as the scattering boundary. 

The parameter E,, (minimum reflection wavelength) was chosen as five zones for 
these calculations. The magnitude of the reflection coefficient is bounded by 0.1 
over a reasonable range of frequencies (Fig. 1 for 277X, = 5). The minimum 
wavelength passed by a Lagrangian mesh is 2 zones; however, the calculations 
will be extremely dispersive at this wavelength. Also, the group velocity is zero at 
the wavelength of two zones, hence the short wavelength reflections will be delayed. 
Experience with the technique has shown that nonlinearities such as fractures near 
or through the boundary can result in severe instabilities. 

The fraction of boundary reflection with the damping condition as compared 
to the fixed (Fig. 4) boundary, is somewhat larger than that predicted for a wave- 
length of seven zones (Fig. 1). This can be explained by the fact that the analysis 
of the technique was performed in one dimension and the technique was applied 
in two dimensions. 

Some additional analyses were performed to check the characteristics of the 
spring constant on the tangential component. These calculations showed that the 
magnitude of the reflection was greater when the constant K (Eq. 5) for the tangen- 
tial component, was taken to be E(1 - u)/[(l -t v)(l - 2v)] instead of E/2(1 + v). 
A similar result was obtained when the tangential spring constant was set to zero. 

For applications, the boundaries should be placed somewhat away from the 
region of interest. Some calculations have been performed with these damping 
boundaries as close as 5 or 10 zones from regions of interest and little effect of the 
boundaries could be seen. On another occassion, these boundary conditions have 
been used to simulate the coupling along a real physical boundary. In that case, 
some tuning of the coefficients was required. These conditions have been applied 
only for plane geometries; they have not been tested for cylindrical or spherical 
geometries. 

In conclusion, the damping condition developed here results in reflections that 
are about 11% of the amplitude of the reflection from a fixed or free boundary, and 
about 33 % of that from a scattering boundary used to reduce the terminating 
boundary effects. 
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